
Approximation algorithms for allocation problems:
Improving the factor of 1 − 1/e

Uriel Feige
Microsoft Research

Redmond, WA 98052
urifeige@microsoft.com

Jan Vondrák
Princeton University ∗

Princeton, NJ 08540
jvondrak@gmail.com

Abstract

Combinatorial allocation problems require allocating
items to players in a way that maximizes the total utility.
Two such problems received attention recently, and were
addressed using the same linear programming (LP) relax-
ation. In the Maximum Submodular Welfare (SMW) prob-
lem, utility functions of players are submodular, and for this
case Dobzinski and Schapira [SODA 2006] showed an ap-
proximation ratio of 1 − 1/e. In the Generalized Assign-
ment Problem (GAP) utility functions are linear but players
also have capacity constraints. GAP admits a (1 − 1/e)-
approximation as well, as shown by Fleischer, Goemans,
Mirrokni and Sviridenko [SODA 2006]. In both cases, the
approximation ratio was in fact shown for a more general
version of the problem, for which improving 1− 1/e is NP-
hard.

In this paper, we show how to improve the 1 − 1/e ap-
proximation ratio, both for SMW and for GAP. A common
theme in both improvements is the use of a new and opti-
mal Fair Contention Resolution technique. However, each
of the improvements involves a different rounding procedure
for the above mentioned LP.

In addition, we prove APX-hardness results for SMW
(such results were known for GAP). An important feature
of our hardness results is that they apply even in very re-
stricted settings, e.g. when every player has nonzero utility
only for a constant number of items.

1 Introduction

Allocation problems. Combinatorial allocation problems
arise in situations such as combinatorial auctions, where
items or goods are to be allocated to competing players
(or “bidders”) by a central authority, with the goal of max-
imizing the total utility provided to the players. In the

∗work done while at Microsoft Research

most general setting, there is a finite set I of m items
and n players who have possibly different utility functions
wi : 2I → R, representing their utility derived from subsets
of I . We always assume monotonicity: ∀S ⊂ T ; 0 =
wi(∅) ≤ wi(S) ≤ wi(T). The goal is to find disjoint sets
S1, S2, . . . , Sn ⊆ I to be allocated to the n players such
that their total utility

∑n
i=1 wi(Si) is maximized.

In this generality, the problem is NP-hard to approxi-
mate within any reasonable factor, such as m1/2−ε even
for “single-minded bidders” [10, 11]. Positive results can
be achieved only under stronger assumptions on the utility
functions. The following properties are commonly consid-
ered, in the decreasing order of generality:

1. Subadditivity. wi(S ∪ T) ≤ wi(S) + wi(T).

2. Fractional subadditivity. wi(S) ≤ ∑
k αkwi(Tk),

whenever 0 ≤ αk ≤ 1 and
∑

k:j∈Tk
αk ≥ 1 for each

j ∈ S. As proved in [6], this is equivalent to the “XOS
property”: wi(S) = maxt∈T fit(S), where each fit is
linear.

3. Submodularity. wi(S ∪ T) + wi(S ∩ T) ≤ wi(S) +
wi(T).

4. Linearity. wi(S) =
∑

j∈S wij .

Another issue is how the utility functions are represented
and accessible to an algorithm. An explicit table of val-
ues would require exponential size, while we would like to
achieve running time polynomial in n and m. Compact rep-
resentations are possible in the case of linearity and in other
special cases. In general, we assume an oracle model to ac-
cess the utility function. In the weakest model, only a value
oracle is available, which returns the value of a given set
for a given player. Following [3, 4, 6], we use the notion of
a demand oracle: Given prices pj to individual items, the
oracle returns a set maximizing wi(S) −∑j∈S pj .

In this paper, we consider three special types of alloca-
tion problems:

• Maximum Submodular Welfare (SMW). The alloca-
tion problem where utility functions are monotone and
submodular. We assume the availability of a demand
oracle to query the utility functions.

• Generalized Assignment Problem (GAP). The al-
location problem with linear utility functions, given
explicitly by item values wij . In addition, each
player has a capacity constraint defining feasible sets:∑

j∈S sij ≤ 1. Here, sij is the size of item j, possibly
different for each player i.

• Maximum Fractionally Subadditive Welfare
(FSAW). The allocation problem with fractionally
subadditive functions, accessible using a demand
oracle.

Note. In the context of GAP, “players” are usually re-
ferred to as “bins”. Throughout this paper, “players” and
“bins” refer to the same entities. We use “bins” only when
talking specifically about GAP.

Capacity constraints can be simulated using a fraction-
ally subadditive function: For each set St feasible for player
i, define fit(S) =

∑
j∈S∩St

wij and wi(S) = maxt fit(S).
Under this utility function, it does not bring any advantage
to allocate an infeasible set S to player i (because we might
as well replace it by St for some feasible St ⊆ S). There-
fore, the FSAW problem with utility functions wi(S) =
maxt fit(S) is equivalent to GAP. It is also known that sub-
modular functions are fractionally subadditive. I.e., both
SMW and GAP are special cases of FSAW.

Previous work. Allocation problems have received a lot
of attention recently. The Maximum Submodular Welfare
problem was considered first by Lehmann, Lehmann and
Nisan [9] who presented a 1/2-approximation algorithm us-
ing a value oracle only. In this model, Khot et al. proved
NP-hardness of approximation for any factor better than
1−1/e [8]. The factor of 1−1/e has been recently achieved
by Dobzinski and Schapira [4], but in the stronger demand
oracle model. For the more general class of subadditive
utility functions, Feige [6] developed a 1/2-approximation
algorithm, which is optimal unless P = NP . No APX-
hardness result was known for submodular utilities in the
demand oracle model.

Regarding the Generalized Assignment Problem, a 1/2-
approximation algorithm was implicit in the work of
Shmoys and Tardos [12], as observed by Chekuri and
Khanna [2]. The approximation factor has been recently
improved to 1 − 1/e by Fleischer, Goemans, Mirrokni and
Sviridenko [5]. Although the title of [5] might suggest oth-
erwise, it remained an open question whether 1− 1/e is in-
deed the optimal approximation factor for GAP. The authors
in [5] proved hardness of (1 − 1/e + ε)-approximation for

SAP, an assignment problem with more general feasibility
constraints (in particular, for its special case, the Distributed
Caching Problem). For GAP, only hardness of (1 − ε)-
approximation for some small ε > 0 was known.

Both (1 − 1/e)-approximation algorithms (for GAP and
SMW) use a similar LP-based approach. The factor of
1 − 1/e arises because of the same reason: both algorithms
use randomized rounding with independent choices for dif-
ferent players. The (1 − 1/e)-approximation algorithm in
[4] also applies to the more general FSAW problem, but only
in an even stronger model using an “XOS oracle”. In [6],
it is shown that the XOS oracle is actually not needed and
FSAW has a (1 − 1/e)-approximation using only demand
queries. This is optimal unless P = NP [3]. Still, it was
not known whether 1 − 1/e is optimal for GAP and SMW.

Our results. Our main result is that the factor of 1 − 1/e
is suboptimal for both GAP and SMW. In both cases, we de-
velop randomized approximation algorithms which achieve
an approximation factor of 1 − 1/e + ε for some absolute
constant ε > 0. Both algorithms are based on the same LP
as used in [4, 6]. The rounding techniques are, however,
quite different in the two cases. The intuitive reason why an
improvement is possible is that the (1−1/e)-approximation
algorithm, using independent choices for different play-
ers, leaves an expected 1/e-fraction of all items unclaimed.
These items can be possibly allocated to some players, in-
creasing their utilities. However, two issues arise: in the
case of submodular utility functions, it is not clear whether
additional items always bring additional profit (and indeed,
sometimes they do not). In the case of GAP, it is not clear
whether additional items can be added to any player with-
out violating the capacity constraint. These two obstacles
need to be treated differently; we explain the case of SMW
in Section 3 and the case of GAP in Section 4. We prove
that in both cases, the LP integrality gap is bounded away
from 1 − 1/e. On the other hand, we present simple exam-
ples of integrality gap 5/6 for SMW and 4/5 for GAP (see
Section 2.1).
Fair Contention Resolution. The first step in both of our
algorithms is a new technique to resolve conflicts between
the random choices of different players. We believe that
this technique may be of independent interest: Suppose that
n players request an item independently with probabilities
p1, p2, . . . , pn. This might result in several players request-
ing the item simultaneously. We show how to resolve con-
tention among the competing players, so that conditioned
on any fixed player competing, she obtains the item with
the same probability (1 −∏i(1 − pi))/

∑
i pi. This is op-

timal since 1 − ∏i(1 − pi) is the probability that at least
one player competes for the item. This technique implies
an approximation factor of 1 − (1 − 1/n)n for the FSAW
problem with n players. For details, see Section 2.2.

2

Hardness of approximation. We prove that there is ε > 0
such that it is NP-hard to approximate the SMW problem
within a factor of 1− ε. Our reduction has the property that
each player is only interested in a constant number of items.
We also show that (1 − ε)-approximation is NP-hard in the
case of n players with the same utility function of polyno-
mial size, and in the case of two players whose utility func-
tions are “separable”, meaning that w(S) =

∑
i w(S ∩ Ci)

where Ci are disjoint classes of constant size. In all these
cases, demand queries can be answered efficiently, in con-
trast to previously known reductions. More details can be
found in Section 5.

2 The Configuration LP

The following linear program has been used to develop
approximation algorithms for several allocation problems
[3, 4, 5, 6].

LP = max
∑

i

∑
S∈Ii

xi,S wi(S);
∀j;

∑
i

∑
S∈Ii:j∈S xi,S ≤ 1,

∀i;
∑

S∈Ii
xi,S ≤ 1,

xi,S ≥ 0.

Here, Ii denotes the collection of feasible sets for player
i. In the case of SMW, this is the collection of all sets of
items, while in the case of GAP, Ii contains the sets re-
specting the capacity constraint for player i. The variable
xi,S can be interpreted as the extent to which set S is allo-
cated to player i. For an integer solution xi,S ∈ {0, 1}, the
constraints require each player to choose at most one set,
and each item to be allocated to at most one player.

This LP has exponentially many variables but there is
an optimal solution with polynomially many nonzero vari-
ables. We do not address the issue of solving the LP here.
For allocation problems with a demand oracle, the LP can
be solved since the demand oracle provides a separation or-
acle for the dual [3]. For the GAP problem, the LP can be
solved to an arbitrary precision (see [5] for more details).
In this work, we suppose a fractional solution is given to us
and we develop randomized rounding techniques to convert
this into an integral solution.

2.1 Integrality gaps

We present two simple examples for this LP, showing in-
tegrality gap 5/6 for SMW and 4/5 for GAP. The examples
use only 2 players and 4 or 3 items, respectively. We can
also prove that our gaps are the worst possible for 2 players
with a half-integral fractional solution; we do not present
the proof here.

Example for SMW, integrality gap 5/6. Consider 4
items {a, b, c, d} and 2 players. Each singleton has value
3 and every set of at least 3 elements has value 6. For pairs
of items, define the utility function of player 1 as follows:

w1(a, d) = w1(b, c) = 5 w1(a, c) = 4 w1(b, d) = 4
w1(a, b) = 6 a b
w1(c, d) = 6 c d

Symmetrically, the utility function of player 2 is the
same except that w2(a, b) = w2(c, d) = 4 and w2(a, c) =
w2(b, d) = 6. This can be verified to be a submodu-
lar function. The optimal fractional solution is x1,{a,b} =
x1,{c,d} = x2,{a,c} = x2,{b,d} = 1/2 which has value 12,
while any integral solution has value at most 10.

Example for GAP, integrality gap 4/5. Consider 3 items
{a, b, c} and 2 bins. The following table shows the values
and sizes for the two bins:

Item size1 value1 size2 value2

a 0.5 1 1.0 2
b 0.5 2 0.5 2
c 1.0 2 0.5 1

The optimal fractional solution is x1,{a,b} = x1,{c} =
1/2 and x2,{a} = x2,{b,c} = 1/2 which has value 5. Any
integral solution has value at most 4.

2.2 The Fair Rounding Algorithm

We start by giving an alternative algorithm to achieve
the factor of 1 − 1/e for the FSAW problem. This rounding
technique combines all the favorable properties of previous
approaches: (1) It is efficient and oblivious, i.e. it does not
depend on the utility functions. (2) It achieves an approx-
imation factor of 1 − (1 − 1/n)n which is strictly better
than 1 − 1/e for any fixed number of players. (3) It beats
1 − 1/e even more significantly, if the fractional solution
is “unbalanced”; this will be useful later. (4) It treats all
players equally, with the same approximation guarantee per
player.

The first step in a randomized rounding algorithm is
to interpret the variables xi,S as probabilities. Since∑

S xi,S ≤ 1, this is a valid probability distribution for each
player i. We say that a player samples a random set from her
distribution, if S is chosen with probability xi,S . Observe
that E[wi(S)] =

∑
S xi,Swi(S) is exactly the player’s share

in the LP.

The Fair Rounding Algorithm.

1. Tentative Choices. Let each player sample indepen-
dently a random “tentative set” Si from her distribu-
tion. Each player “competes” for the items in her ten-
tative set.

3

2. Fair Contention Resolution. Consider an item j. De-
note by Aj the random set of players competing for
item j. Let pij = Pr[i ∈ Aj] =

∑
S∈Ii:j∈S xi,S and

sj =
∑

i∈Aj
pij/

∑n
i=1 pij .

• If Aj = ∅, do not allocate the item.

• If Aj = {k}, allocate the item to player k.

• If |Aj | > 1, choose randomly one of two con-
tention resolution schemes: (a) with probability
1 − sj , (b) with probability sj .

(a) Allocate item j to a uniformly random
player k ∈ Aj .

(b) Allocate item j to a random player
k ∈ Aj , with probabilities proportional to∑

i∈Aj\{k} pij .

Remark. The uniform contention resolution scheme (a)
has been previously considered [6] and it is known that it
achieves factor 1/2 for fractionally subadditive functions.
In order to improve this, it is necessary to “penalize” play-
ers who request the item with high probability, which is the
purpose of scheme (b).

Lemma 1. Let players compete for an item independently
with probabilities p1, p2, . . . , pn. Conditioned on player k
competing, the Fair Contention Resolution technique allo-
cates it to her with probability

ρ =
1 −∏n

i=1(1 − pi)∑n
i=1 pi

.

Proof. Condition on A being the set of players competing
for the item and assume |A| > 1. In scheme (a), each
player in A obtains the item with probability 1/|A|. In
(b), we get by normalizing that the probability for player
k is 1/(|A| − 1) · ∑i∈A\{k} pi/

∑
i∈A pi. By averag-

ing these two schemes with weights 1 − s and s, where
s =

∑
i∈A pi/

∑n
i=1 pi, we obtain that player k gets the

item with probability

rA,k =
1∑n

i=1 pi


 ∑

i∈A\{k}

pi

|A| − 1
+
∑
i/∈A

pi

|A|


 (1)

conditioned on the set of competing players A.
Suppose for now that we allocate the item to each player

k ∈ A with probability rA,k, even when A = {k}. (For
the sake of the proof, we interpret the sum over A \ {k} for
A = {k} as zero, even though the summand is undefined.)
Then the total probability that player k receives the item
would be

q′k = pk EA[rA,k | k ∈ A]. (2)

However, when A = {k}, our technique actually allo-
cates the item to player k with probability 1, rather than

r{k},k =

∑
i�=k pi∑n
i=1 pi

= 1 − pk∑n
i=1 pi

.

So player k gains an additional probability pk∑n
i=1 pi

Pr[A =
{k}] which makes the total probability that player k obtains
the item equal to

qk = q′k +
pk∑n
i=1 pi

Pr[A = {k}]. (3)

We would like to show that qk = pk∑
pi

Pr[A �= ∅]. This
means that q′k should be equal to pk∑

pi
Pr[A \ {k} �= ∅].

Let’s define B = [n] \ {k} and let A′ = A \ {k} be the set
of players competing with k. The probability of a particular
set A′ occurring is p(A′) =

∏
i∈A′ pi

∏
i∈B\A′(1 − pi).

Let’s expand (2) as a weighted sum over all possible subsets
A′ ⊆ B:

q′k = pk

∑
A′⊆B p(A′) rA′∪{k},k

= pk∑n
i=1 pi

∑
A′⊆B p(A′)

(∑
i∈A′

pi

|A′| +
∑

i∈B\A′
pi

|A′|+1

)
.

Ideally, we would like to get q′k = pk∑
pi

∑
∅�=A′⊆B p(A′)

but we have to perform a certain redistribution of terms to
achieve this. Observe that

p(A′)
pi

|A′| + 1
=

1 − pi

pi
p(A′ ∪ {i}) pi

|A′| + 1

= p(A′ ∪ {i}) 1 − pi

|A′ ∪ {i}| .

Using this identity to replace the terms for i ∈ B \ A′, we
get

q′k =
pk∑n
i=1 pi

(∑
A′⊆B

∑
i∈A′

p(A′)
pi

|A′|

+
∑

A′⊆B

∑
i∈B\A′

p(A′ ∪ {i}) 1 − pi

|A′ ∪ {i}|
)

=
pk∑n
i=1 pi

(∑
A′⊆B

∑
i∈A′

p(A′)
pi

|A′|

+
∑

∅�=A′′⊆B

∑
i∈A′′

p(A′′)
1 − pi

|A′′|
)

and joining the terms where A′ = A′′ �= ∅, we get

q′k = pk∑n
i=1 pi

∑
∅�=A′⊆B p(A′)

(∑
i∈A′

pi

|A′| +
∑

i∈A′
1−pi

|A′|

)
= pk∑n

i=1 pi

∑
∅�=A′⊆B p(A′) = pk∑n

i=1 pi
Pr[A \ {k} �= ∅].

So indeed, we obtain from (3) that player k receives the item
with probability

qk = pk∑n
i=1 pi

Pr[A �= ∅] = pk∑n
i=1 pi

(1 −∏n
i=1(1 − pi)) .

4

In the case of two players who compete for an item with
probabilities p1 +p2 = 1, this algorithm resolves a possible
contention by allocating the item with reversed probabili-
ties: p2 for player 1 and p1 for player 2. This achieves an
approximation factor of 3/4 for two players, even for frac-
tionally subadditive utilities, as observed already in [6]. For
n players, this technique guarantees an approximation fac-
tor of 1−(1−1/n)n > 1−1/e. This follows just like in [6]
from the fact that each player receives every requested item
with conditional probability ρ ≥ 1 − (1 − 1/n)n. This
matches exactly the known integrality gap for the FSAW
problem - for fractionally subadditive utilities, this tech-
nique cannot be improved. However, our main goal is to
obtain an absolute constant larger than 1 − 1/e, indepen-
dent of n, for the SMW and GAP problems.

2.3 Unbalanced fractional solutions

Observe that the Fair Contention Resolution technique
actually gives a value of ρ better than 1 − (1 − 1/n)n, if
some players take the item with a large probability pij =∑

S∈Ii:j∈S xi,S . Let’s fix an ε1 > 0 and call an item j ε1-
unbalanced if pij > ε1 for some i, or if

∑
i pij < 1 − ε1.

An elementary estimate gives that in both cases, each player
receives item j with conditional probability

ρj =
1 −∏n

i=1(1 − pij)∑n
i=1 pij

≥ 1 −
(

1 − 1
2
ε21

)
1
e
.

If a substantial fraction of the LP value comes from unbal-
anced items, then we gain compared to 1 − 1/e. However,
we have to define carefully what we mean by the “contribu-
tion of an item” in the case of submodular utility functions.

Definition 2. Fix an ordering of the items [m] =
{1, 2, . . . ,m} and denote [j] = {1, 2, . . . , j}. Define the
expected contribution of item j to player i as

σij = E[wi(Si ∩ [j]) − wi(Si ∩ [j − 1])]

where Si is a random set sampled from player i’s distribu-
tion.

Note that
∑

j σij = E[wi(Si)] and
∑

i,j σij = LP . This
way of partitioning the LP value is useful because of the
following lemma.

Lemma 3. Let Si be a random set sampled from player i’s
distribution, and let X be a random set such that condi-
tioned on any Si and for any item j, Pr[j ∈ X | Si] ≥ ρj .
Assume wi monotone and submodular. Then taking the ex-
pectation over both Si and X ,

E[wi(Si ∩ X)] ≥
m∑

j=1

ρjσij .

Proof. Using the property of decreasing marginal values,
we obtain

wi(Si ∩ X) =
m∑

j=1

(wi(Si ∩ X ∩ [j]) − wi(Si ∩ X ∩ [j − 1]))

≥
m∑

j=1

(wi(Si ∩ ([j − 1] ∪ (X ∩ {j}))) − wi(Si ∩ [j − 1])).

Conditioned on Si, j appears in X with probability at
least ρj , so taking expectation over X yields

EX [wi(Si∩X) | Si] ≥
m∑

j=1

ρj(wi(Si∩[j])−wi(Si∩[j−1]))

and therefore ESi,X [wi(Si ∩ X)] ≥∑m
j=1 ρjσij .

Note. This applies to GAP even more easily, since items
have individual values wij and we have σij = pijwij .

Now we can argue that we gain if ε1-unbalanced items
contribute a significant fraction of the LP value. As a con-
sequence, we can assume that there are no ε1-unbalanced
items; we call such a fractional solution ε1-balanced.

Lemma 4. Suppose that for any ε1-balanced fractional so-
lution, there is a rounding technique (for either SMW or
GAP) which achieves an approximation factor of 1−1/e+ε,
0 < ε < 1/(2e). Then there is a rounding technique
for any fractional solution which achieves factor at least
1 − 1/e + εε21/(2e).

Proof. Let U denote the set of ε1-unbalanced items. First
suppose that

∑
i

∑
j∈U σij ≥ ε · LP and apply the Fair

Rounding Algorithm. For each unbalanced item j ∈ U ,
each player competing for it receives it with conditional
probability at least 1 − 1/e + ε21/(2e). By Lemma 3, the
expected total profit from this rounding is at least

∑
i

∑
j

ρjσij ≥
(

1 − 1
e

)∑
i

∑
j

σij +
ε21
2e

∑
i

∑
j∈U

σij

≥
(

1 − 1
e

+
εε21
2e

)
· LP.

Otherwise, we have
∑

i

∑
j∈U σij < ε · LP . Then let’s

remove the unbalanced items. In the worst case this in-
curs a factor of (1 − ε) on the value of the fractional so-
lution. By assumption, there is a technique (to be shown
later) which we can apply to the balanced solution, that
achieves approximation factor at least (1−1/e+ε)(1−ε) =
1 − 1/e + ε/e − ε2 which is at least 1 − 1/e + ε/(2e) for
ε < 1/(2e).

The arguments so far were equally valid for SMW and
GAP. We can assume now that the fractional solution is ε1-
balanced. Applying the Fair Rounding Algorithm (or in fact

5

any rounding procedure where every player samples inde-
pendently a random set and contention is resolved in some
way), we see that item j remains unclaimed with probabil-
ity
∏n

i=1(1 − pij) � 1/e. On the average, 1/e of all items
are available to be allocated in a second stage, which gives
some hope that an improvement over 1−1/e should be pos-
sible. Somewhat surprisingly, there exist instances where
the remaining items do not bring any additional profit (for
SMW) or they do not fit (for GAP), regardless of how we as-
sign them or how conflicts were resolved in the first stage.
Therefore we must redesign even the first stage of the al-
gorithm in order to achieve some improvement. This is the
point where the two solutions diverge.

3 Maximum Submodular Welfare

Our general idea is that each player should sample mul-
tiple sets independently from their distribution. However,
contention must be resolved carefully among these sets, so
that we can provably increase the total welfare. Our final
rounding technique is quite complicated; it is instructive to
describe it first on the example of two players.

3.1 Two players with a balanced fractional
solution

Assume that for any item j,
∑

S:j∈S x1,S =∑
T :j∈T x2,T = 1/2. This is the worst case for the Fair

Rounding Algorithm, in which case the approximation fac-
tor is exactly 3/4. We show that in fact we can improve
upon 3/4 in this special case.

Algorithm for two players with submodular utilities and
a balanced fractional solution.

• Player 1 samples independently random sets S, S′.

• Player 2 samples independently random sets T, T ′.

• Let Y = (S∩T)∪(S′∩T), Z ′ = (T ∩S′)∪(T ′∩S′).

We assign items randomly as follows:

Probability 1/3 1/3 1/6 1/6
Player 1 S T Y Y \ Z ′

Player 2 S T Z ′ \ Y Z ′

Theorem 5. The algorithm for two balanced players gives
expected profit at least 37/48 · LP .

Proof. We only sketch the important arguments. Note that
each of the random sets S, T, S′, T ′, Y, Z ′ contains every
item with probability 1/2. For player 1, let α = E[w1(S)]

be his share in the LP, while E[w1(T)] is what’s left after
player 2 chooses her set T first. Since every item remains
in T with prob. 1/2, by monotonicity and Lemma 3 with
X = T and ρj = 1/2 we get E[w1(T)] ≥ E[w1(S ∩ T)] ≥
α/2. If the inequalities were tight, player 1 would get only
1/2 of his share, following player 2’s choice. Randomizing
the ordering of the two players, this would yield a factor of
3/4. However, at this moment the sets Y and Z ′ come into
play. For Y , the condition of submodularity implies that

E[w1(Y)] + E[w1(T)] ≥ E[w1(Y ∪ T)] + E[w1(Y ∩ T)]
≥ E[w1(S)] + E[w1(S′ ∩ T)] ≥ 3

2α

using linearity of expectation and Lemma 3. I.e., if
E[w1(T)] is close to α/2, then E[w1(Y)] � α. The same
holds for Z ′ by the same reasoning for player 2. Thus in
this case, the sets Y,Z ′ retain the complete value of the
LP. Moreover, they are not independent like S and T . The
events j ∈ Y, j ∈ Z ′ are negatively correlated: While
Pr[j ∈ Y] = Pr[j ∈ Z ′] = 1/2,

Pr[j ∈ Y ∩ Z ′] = Pr[j ∈ (S ∩ T) ∩ (S′ ∪ T ′)] =
3
16

rather than 1/4 which is the probability of appearance in
S ∩ T . Thus we lose only 3/16 of the expected value by
resolving contention between Y and Z ′. A detailed compu-
tation yields that the total expected profit from this rounding
technique is at least 37/48 · LP .

Similarly to Lemma 4, this implies an improvement over
3/4 for two players in the general case. Let’s remark that by
a more careful analysis, we are able to combine the balanced
and unbalanced case to achieve an approximation factor of
13/17 for two players.

3.2 n players with a balanced fractional
solution

We adapt the ideas from the two-player case to achieve a
constant improvement over 1−1/e for any number of play-
ers. Our approach is to divide the players randomly into two
groups A,B and treat them as two “superplayers”. Let’s as-
sume again that the fractional solution is ε1-balanced. Due
to a concentration result on sums of independent variables,
we have for most items j

∑
i∈A

pij �
∑
i∈B

pij � 1
2
± O(

√
ε1).

For a collection of sets {Si : i ∈ A} sampled by players in
one group, we use Lemma 1 to resolve contention. To dis-
tribute items between the two groups, we use ideas inspired
by the two-player case.

6

Algorithm for n balanced submodular players.

• Let each player in group A sample two independent
random sets Si, S

′
i.

• Let each player in group B sample two independent
random sets Ti, T

′
i .

• Let U =
⋃

i∈A Si, U ′ =
⋃

i∈A S′
i, V =⋃

i∈B Ti, V ′ =
⋃

i∈B T ′
i .

• Let the players in A resolve contention among Si to
obtain disjoint sets S∗

i . Similarly, resolve contention
among S′

i to obtain disjoint sets S′∗
i . Let the players in

B resolve contention among Ti to obtain disjoint sets
T ∗

i and among T ′
i to obtain disjoint sets T ′∗

i .

• Let Y ∗
i = (S∗

i ∩ V) ∪ (S′∗
i ∩ V), Z∗

i = (T ∗
i ∩ U) ∪

(T ′∗
i ∩ U), Y ′∗

i = (S∗
i ∩ V ′) ∪ (S′∗

i ∩ V ′) and Z ′∗
i =

(T ∗
i ∩ U ′) ∪ (T ′∗

i ∩ U ′).

We assign the items randomly according the following
table, with p = 1/(1 + 2e1/2):

Prob. Player i ∈ A Player i ∈ B
e1/2p S∗

i (T ∗
i ∪ (T ′∗

i \ V)) \ U

e1/2p (S∗
i ∪ (S′∗

i \ U)) \ V T ∗
i

p/2 Y ′∗
i Z∗

i \⋃j∈A Y ′∗
j

p/2 Y ∗
i \⋃j∈B Z ′∗

j Z ′∗
i

Theorem 6. For n players with an ε1-balanced fractional
solution, the algorithm above yields expected profit at least
(1 − 1/e + 1/100 − O(

√
ε1)) · LP .

We omit the proof from this extended abstract. Due to
Lemma 4, this implies a (1 − 1/e + ε)-approximation for
any fractional solution.

4 Generalized Assignment Problem

Now we turn to the Generalized Assignment Problem
(GAP). Recall that in GAP, each item j has an explicit value
wij for bin i. The added complication is that only sets satis-
fying the capacity constraint

∑
j∈S sij ≤ 1 can be allocated

to bin i. As a result, our approach for the SMW problem
does not work here, since we cannot pack two sets Si, S

′
i

into the same bin. Instead, we proceed as follows. Recall
that we have to deal only with the case of ε1-balanced frac-
tional solutions, for some very small constant ε1 > 0. Also,
we will show that we may further assume that item values
are uniform, and there are no precious sets (these terms will
be defined shortly). Thereafter, we will be able to prove
that it is possible to improve the Fair Rounding Algorithm
by reallocating certain items and packing some additional
items.

Non-uniform item values. First, we treat the case where
item values vary significantly between different bins. We
know that the Fair Rounding Algorithm yields a factor of
at least 1 − 1/e. However, since now the utility functions
are linear, there is a simpler way to resolve conflicts - just
allocate the item to the bin that gives it the maximum value
wij . This is the technique used in [5]; let’s call it the Greedy
Rounding Algorithm. We show that if the item values are
significantly non-uniform then Greedy Rounding gains sig-
nificantly compared to 1 − 1/e. The following lemma fol-
lows easily by comparing the two rounding methods.

Lemma 7. Fix ε2 > 0. For each item j, let Wj =∑
i pijwij and Bj = {i : wij < (1 − ε2)Wj}. Call the

value of item j non-uniform if
∑

i∈Bj
pij > ε2. For any

non-uniform item, the Greedy Rounding Algorithm retrieves
expected value at least (1 − 1/e + (ε2/e)2)Wj .

We interpret the set Bj as “bad bins” for item j. The
meaning of this lemma is that if many bins are bad for item
j, then we gain by placing it in the optimal bin rather than
a bad bin. We choose ε2 > 0 such that ε1 = e−2ε32. If at
least an ε2-fraction of the LP value comes from non-uniform
items, we gain e−2ε32LP = ε1LP . If the contribution of
non-uniform items is smaller than ε2, we remove each item
from all its bad bins, and we remove all non-uniform value
items completely. We redefine the value of item j to (1 −
ε2)Wj . This decreases the value of the LP by at most 3ε2 ·
LP and after this procedure, each item has the same value
for each bin where it is used (and the new value is not higher
than the original value).

Precious sets. Now we can assume that the value of each
item is independent of the bin where it is placed, wj =
wij ∀i. Next, we consider the distribution of values among
different sets for a given bin. The average value assigned
to bin i is Vi =

∑
S xi,Sw(S) =

∑
j pijwj . We call a

set S precious for bin i if w(S) > 10Vi. We prove that
if many sets are precious, we can gain by taking these sets
with higher probability. We set ε3 = 400ε2. The following
lemma can be proved by increasing the sampling probabil-
ity of each precious set by a factor of 2 and decreasing the
sampling probabilities of non-precious sets.

Lemma 8. Assume that precious sets contribute value at
least ε3 · LP . Then there is an algorithm which achieves
expected value at least (1 − 1/e + ε3/100) · LP .

Again, we either gain due to this lemma, or we remove
all precious sets from the LP. If most of a bin’s value is com-
posed of precious sets, we remove the bin from the solution
completely. For other bins, the expected value Vi might go
down by a factor of 2, but overall we lose at most 2ε3 · LP
and any set possibly allocated to bin i has value at most
20Vi.

7

Migrants. Now the item values are uniform and there are
no precious sets. Our final goal is to pack some additional
items into the gaps created by contention among bins. We
process the bins in the order of V1 ≤ V2 ≤ V3 ≤ . . . and
resolve contention in favor of the first bin that claims an
item in this order. We call this the Sequential Allocation
Algorithm. This would still achieve an approximation factor
of 1 − 1/e. However, we prove that this algorithm can be
improved, since some items are gone due to contention with
preceding bins and some additional items can be packed in
the available space. We refer to items useful for this purpose
as “migrants”.

Definition 9. Fix an ε4 > 0. A migrant for bin k is an item
j such that

∑k−1
i=1 pij ≥ 1 − ε4.

We choose ε4 such that ε3 << ε34 but ε4 is still very
small. Therefore, at the moment it is considered for bin k, a
migrant is available with probability roughly 1/e. This im-
poses constraints on the other ε’s and consequently our final
improvement (� ε31). We can set for example ε4 = 0.001
which implies ε1 � 10−60 and then our final improvement
is on the order of 10−180.

Note that being migrant is only defined with respect
to a certain bin. Every item is migrant for some bins,
since

∑n
i=1 pij > 1 − ε1 (balanced fractional solution).

Therefore, we can assume that an Ω(ε4)-fraction of the
LP value comes from migrants. Consequently, at least an
Ω(ε4)-fraction of bins (by LP contributions) have an Ω(ε4)-
fraction of their value in migrants. Let’s call these bins
“flexible”. We will prove that each of them can gain a con-
stant fraction of its LP share in addition to what it would get
under the Sequential Allocation Algorithm.

For each set S which could be assigned to bin k, let’s
define Mk(S) to be the migrants for bin k in S. We will
drop the index when it’s clear which bin we are referring
to. We can assume that the value of these items is either
w(Mk(S)) = Ω(ε4)Vk or Mk(S) = ∅. (For sets with mi-
grants of value less than Ω(ε4)Vk, we set Mk(S) = ∅; this
decreases the contribution of migrants only by a constant
factor.) Let’s call the sets with nonempty Mk(S) “flexible”
for bin k. We have∑

S∈Fk

xk,Sw(Mk(S)) = Ω(ε4)Vk

where Fk is the collection of flexible sets for bin k. Suppose
that the probability of sampling a flexible set for bin k is∑

S∈Fk

xk,S = rk.

Note that since migrants should contribute at least an Ω(ε4)-
fraction of the bin’s value Vk, this probability must be
rk = Ω(ε4). Here, we use the fact that there are no sets of

value significantly exceeding Vk. The probability of sam-
pling each individual set is at most ε1 << ε4 which al-
lows us to assume that we can split the collection of flexible
sets into three (roughly) equal parts in terms of probability.
Let’s select a portion of the flexible sets S ∈ Fk with the
largest sizes of M(S) and denote them by Ak. For each set
S ∈ Ak, order the remaining flexible sets S′ ∈ Fk \ Ak by
the size of M(S′)\M(S), and partition them into two parts
Bk(S), Ck(S), so that for any S′ ∈ Bk(S), S′′ ∈ Ck(S), we
have sizek(M(S′)\M(S)) ≥ sizek(M(S′′)\M(S)). We
make these parts roughly equal so that∑

S∈Ak

xk,S ≥
∑

S′∈Bk(S)

xk,S′ ≥
∑

S′′∈Ck(S)

xk,S′′ ≥ rk

4
.

The purpose of this partitioning is that we will be able to
switch migrants between sets: any M(S′) for S′ ∈ Bk(S)
fits into the space occupied by M(S), S ∈ Ak, and any
M(S′′) \ M(S) for S′′ ∈ Ck(S) fits into the space of
M(S′) \ M(S) for S′ ∈ Bk(S). This allows a scheme
of switching migrants that achieves an approximation fac-
tor strictly better than 1 − 1/e.

The Improved Sequential Allocation Algorithm.

• Order the bins by V1 ≤ V2 ≤ V3 ≤ . . . For bin k, let
Uk denote the items allocated to previous bins.

• Let bin k sample a random set Sk from its distribution.
If k is a flexible bin, sample two more sets S′

k, S′′
k .

• If Sk ∈ Ak and S′
k ∈ Bk(Sk), pack (Sk∪M(S′

k))\Uk

if possible into bin k.

• If S′
k ∈ Ak, Sk ∈ Bk(S′

k), S′′
k ∈ Ck(S′

k) and
(S′

k ∪ M(Sk)) \ Uk fits in bin k (as in the previous
case but with the roles of Sk and S′

k exchanged), then
pack (Sk\(M(Sk)\M(S′

k))∪(M(S′′
k)\M(S′

k)))\Uk

into bin k. This set is guaranteed to fit because
sizek(M(S′′

k) \ M(S′
k)) ≤ sizek(M(Sk) \ M(S′

k))
due to the properties of Bk(S′

k) and Ck(S′
k).

• In all other cases, allocate Sk \ Uk to bin k and go to
the next bin.

Theorem 10. For any balanced fractional solution where
item values are uniform and there are no precious sets,
the Improved Sequential Allocation Algorithm achieves ex-
pected value at least (1 − 1/e + Ω(ε54)) · LP .

We only sketch the proof here. Consider a flexible bin k.
For each pair of sets Sk ∈ Ak, S′

k ∈ Bk(S), we calculate
the expected size of (M(Sk) ∪ M(S′

k)) \ Uk by averaging
over the previously allocated items Uk. Since the size of
M(S′

k) is at most the size of M(Sk), and each migrant ap-
pears in Uk with probability at least 1 − e−(1−ε4), we have

EUk
[sizek((M(Sk) ∪ M(S′

k)) \ Uk)]

8

≤ e−(1−ε4)sizek(M(Sk) ∪ M(S′
k)) ≤ 4

5
sizek(M(Sk)).

By Markov’s inequality, we get

Pr
Uk

[sizek((Sk ∪ M(S′
k)) \ Uk) ≤ 1] ≥ 1

5
.

Thus for each fixed pair (Sk, S′
k) like this, the algo-

rithm succeeds in packing (Sk ∪ M(S′
k)) \ Uk with con-

stant probability. We call Uk “favorable” for the pair
(Sk, S′

k) if this occurs. Now consider what happens when
the same pair of sets is selected by the bin in the oppo-
site order, i.e. the roles of Sk and S′

k are switched. Now,
S′

k ∈ Ak and Sk ∈ Bk(S′
k). Suppose Uk is favorable

for (S′
k, Sk) and in the previous case, we managed to pack

(M(Sk) \M(S′
k)) \Uk in addition to what the standard al-

gorithm would have packed. Now when the algorithm sam-
ples (Sk, S′

k), we can afford to give up this set and take only
(Sk \ (M(Sk)\M(S′

k)))\Uk. By averaging the two cases,
this would bring us back to a random allocation equivalent
to the standard algorithm. In addition, however, our im-
proved algorithm allocates (M(S′′

k) \ M(S′
k)) \ Uk. This

happens whenever S′
k ∈ Ak, Sk ∈ Bk(S′

k), S′′
k ∈ Ck(S′

k)
and Uk is favorable for the pair (S′

k, Sk). Since the set
S′′

k ∈ Ck(S′
k) is sampled independently of everything else,

we will gain a definite improvement if there is at least a
constant fraction of Ck(S′

k) still available for bin k. For this
purpose, we use the following concentration result.

Lemma 11. Let A be a finite set with a weight function
f : A → R+, f(A) = 1; α, λ > 0 and 0 < ε < 1/2. Let
S1, S2, . . . , Sq be independent random subsets of A where
Pr[j ∈ Si] = pij and

• ∀i;∀j ∈ A; pij ≤ ε.

• ∀j ∈ A;
∑q

i=1 pij ≤ 1.

• We always have f(Si) ≤ α.

Then

Pr

[
f

(
q⋃

i=1

Si

)
> 1 − e−(1+ε) + λ

]
<

α + O(ε)
λ2

.

This lemma can be proved using the second moment
and Chebyshev’s inequality. We apply it to a function f
which represents the contribution of migrants in Ck(S′

k) to
bin k, normalized to sum up to 1. The sets S1, S2, . . . are
the sets of items allocated to preceding bins. The crucial
point here is that any set Si allocated to bin i < k has
value at most 20Vi ≤ 20Vk; since Vk =

∑
j pkjwkj and

pkj ≤ ε1, the loss of LP value for bin k due to items in Si

can be at most 20ε1Vk. This is very small even compared to
the value of migrants in Ck(S′

k) which is Ω(ε4Vk). There-
fore, Lemma 11 implies that a constant fraction of the value

in migrants is still available for bin k, say with probability
9/10 (with respect to Uk). Even if this event is negatively
correlated with the event that Uk is favorable for (S′

k, Sk),
which happens with probability at least 1/5, there is proba-
bility at least 1/10 that both events occur. Thus each flexible
bin k gains a constant fraction of its value Vk.

5 Hardness of approximation for SMW

In this section we show that there is some constant ε > 0
such that it is NP-hard to approximate the Maximum Sub-
modular Welfare problem within a ratio better than 1 − ε,
even using a demand oracle. Previously it was shown in [8]
that the maximum submodular welfare problem is hard to
approximate within a ratio better than 1 − 1/e; however,
there the source of the hardness result is the complexity of
individual utility functions: given k, it is already NP-hard to
approximate within a ratio better than 1−1/e the maximum
utility that a single player can derive by choosing at most k
items. In particular, it is NP-hard for players to answer de-
mand queries. We remark that a powerful oracle model can
bypass previous hardness results; e.g., there is a polynomial
time incentive compatible mechanism based on “fair divi-
sion queries” that extracts the maximum welfare, provided
only that all players have the same utility function (submod-
ular or not). Our new hardness results are the following.

Theorem 12. There is some constant ε > 0 such that it is
NP-hard to approximate the Maximum Submodular Welfare
problem within a ratio better than 1 − ε in the following
cases.

1. When all players have constant size utility functions.
In particular, each player gets nonzero utility only from
15 specific items.

2. When all players have the same utility function. More-
over, the utility function is constant for sets of size more
than 7. The value of ε here is 1/(12 · 23).

3. When there are only two players. Moreover, their util-
ity functions are separable; i.e., the items can be par-
titioned into disjoint classes Cj of constant size such
that wi(S) =

∑
j wi(S ∩ Cj).

In all these cases, demand queries can be answered ef-
ficiently. The proofs are based on reductions from Max 3-
coloring-5 and Max k-cover. We present only the proof of
the first hardness result. We believe that the use of con-
stant size utility functions is the most natural way to rule
out a possible approximation result even in a very strong or-
acle model. It is hard to imagine any reasonable query that
would be difficult to answer regarding such a utility func-
tion, and hence queries will not transfer the computational
burden to the players.

9

Proof. We use the following NP-hardness result [7]: There
is an ε > 0 such that given a 5-regular graph, it is NP-
hard to distinguish between the case where its vertices can
be legally 3-colored, and the case where every 3-coloring
makes an ε-fraction of edges illegally colored.

Given a 5-regular graph with n vertices and m edges
(hence 2m = 5n) we reduce it to the following SMW in-
stance. With every edge e we associate three items, e1, e2

and e3, corresponding to the three colors {1, 2, 3}. Hence
there are 3m items. There will be m edge players, one for
every edge, and n vertex players, one for every vertex. The
utility function of the player pe who is associated with edge
e gives the player utility 1 if she receives at least one of the
three items associated with the edge, and utility 0 otherwise.
The utility function of the player pv who is associated with
vertex v is nonzero on 15 items, the items associated with
the edges incident with v. There are three special sets of size
5: the monochromatic subsets of these 15 items. Each spe-
cial set has value 5, while any other set of size 5 has value
4.5. Any set of size b < 5 has value b, and any set of size
b > 5 has value 5. These utility functions are submodular.

On positive instances, we can legally 3-color the graph.
Then each vertex player gets the five items associated with
her chosen color. Each edge player can get the unallocated
item associated with her edge. Altogether, the total welfare
is 3m (all items are allocated and give utility 1 per item),
and all players are maximally happy.

On negative instances, we use the following analysis.
Without loss of generality, we may assume that every edge
player gets one item (because then the item contributes
marginal utility 1, and there is no way it can contribute
more). Likewise, we may assume that every vertex player
gets exactly 5 items, one from every incident edge (other-
wise a shifting argument would yield an allocation with at
least as much welfare). We define a vertex coloring derived
from the colors of these items. For vertex players whose
items are all of the same color, assign the same color to the
vertex. Such players are maximally happy. Assume that k
vertex players are “unhappy” in the sense that their 5 items
are not monochromatic. For such vertices, choose a ma-
jority color among the 5 items and assign it to the vertex.
For each unhappy vertex player, there can be up to 3 edges
with an illegal coloring. For all other edges, the coloring
of the two endpoints is derived from two items of differ-
ent colors, therefore their coloring is legal. The number of
illegally colored edges is at least εm and at most 3k, i.e.
3k ≥ εm. Each unhappy player loses value 1/2, hence the
maximum welfare is at most 3m−εm/6, showing that max-
imum submodular welfare cannot be approximated within a
factor better than 1 − ε/18.

References

[1] Steven J. Brams, Alan D. Taylor. Fair Division: From
cake-cutting to dispute resolution. Cambridge Univer-
sity Press, 1996.

[2] Chandra Chekuri and Sanjeev Khanna. A PTAS for
the multiple knapsack problem. Proceedings of SODA
2000: 213–222.

[3] Shahar Dobzinski, Noam Nisan and Michael Schapira.
Approximation algorithms for combinatorial auctions
with complement-free bidders. Proceedings of STOC
2005: 610–618.

[4] Shahar Dobzinski and Michael Schapira. An improved
approximation algorithm for combinatorial auctions
with submodular bidders. Proceedings of SODA 2006:
1064–1073.

[5] Lisa Fleischer, Michel X. Goemans, Vahab Mirrokni
and Maxim Sviridenko. Tight approximation algo-
rithms for maximum general assignment problems.
Proceedings of SODA 2006: 611–620.

[6] Uriel Feige. On maximizing welfare when utility func-
tions are subadditive. Proceedings of STOC 2006: 41–
50.

[7] Uriel Feige, Magnus M. Halldorsson, Guy Kortsarz
and Aravind Srinivasan. Approximating the domatic
number. SIAM J. Comput. 32(1): 172–195 (2002).

[8] Subhash Khot, Richard Lipton, Evangelos Markakis
and Aranyak Mehta. Inapproximability results for
combinatorial auctions with submodular utility func-
tions. Proceedings of WINE 2005.

[9] Benny Lehmann, Daniel J. Lehmann and Noam Nisan.
Combinatorial auctions with decreasing marginal util-
ities. In ACM Conference on Electronic Commerce
2001: 18–28.

[10] Daniel J. Lehmann, Liadan O’Callaghan and Yoav
Shoham. Truth revelation in approximately efficient
combinatorial auctions. In ACM Conference on Elec-
tronic Commerce 1999.

[11] Tuomas Sandholm. An algorithm for optimal winner
determination in combinatorial auctions. Proceedings
of IJCAI 1999.

[12] David Shmoys and Eva Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Programming 62(3), 461-474 (1993).

10

